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ABSTRACT

The purpose of this study is 10 investigate the ability of a mod-
ified adaptive algorithm to increase the convergence rate on weak noise com- .
ponents, A detailed mathematical derivation of the modified algorithm is pre-
sented. In addition, performance of the algorithm on synthetic data is evaluated.
The algorithm is applied in both a single loop and a two loop mode. Both single-

constraint and multiple-constraint modes of operation are investigated.

The results of this study indicate that the multiloop adaptive
filtering algorithm can be used to speed the rate at which an adaptive filter

set approaches optimality.
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SECTION I
INTRODUCTION

The rate of convergence of an adaptive filter algorithm to a
neighborhood of the optimum filter is approximated in terms of the eigenvalues
corresponding to the principal components of some matrix closely associated
with the noise matrix (Brennan, 1971). For the frequency-domain maximum-

likeiihood adaptive algorithm, the adaptive update equation is:

H
PG 2u {1 - _\_/%__ Xt(XH)t At
vy

where Xt is the input data vector at the tth iteration, VH is the beamsteer
filter, A is the conjugate transpose of the adaptive filter vector at the (t+1)th
and tth iterations, respectively, and u is a real scalar quantity controlling
the adaptation rate., The superscript H denotes conjugate transpose. The
output of the adaptive filter at the tth iteration is (AH)tXt. If we substitute
¢=E (XXH) for Xt(XH)t in the update equation for this particular algorithm,

the time constant ¢ is approximately
p

1
2uA
%

‘h
for energy lying on the p  orthonormalized eigenvector of the matrix

VVH VVH

I- — ) & |1- ——

H
\A' VHV

where p << l/Ap. Here Ap is the pth eigenvalue of that matrix,
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: . th N .
T is the time constant for the p  principal component in the sense that the

portion of the excess filter output RMS
VaHea - (aFea)

. . th . . .
associated with the p  principal component of the matrix

minimum

vvi vy
1- =] ¢ (1- =~
vV viv

is reduced by a factor e =2.71828 in approximately l/(ZyAp) iterations.

Similarly, the amplitude

-

a a)
P P

optimum

of the difference between the adaptive filter and the optimum maximum-
likelihood filter along the pth principal component is likewise reduced by a
factor e in the same period of time. It is assumed that substitution of ® for

Xt(Xt)H does not change the answer much. *

Stability of the adaptive algorithm requires that

< l/)\max

so that the time constant for weak components may be very great and u can-
not be chosen sufficiently large for practical effectiveness against very weak
components. The purpose of the present study is to investigate the ability of
modified adaptive algorithms to increase the convergence rate on weak noise
components,

For the purpose of simplicity, the modified algorithms in the
frequency domain will be discussed, although in the following section the mod-
ified algorithms are developed in both the time and frequency domains, Let
there be a sequence of data vectors Xt at a specific frequency. These vectors

* This would be the case if successive data vectors were independent. 1n the
dependent data vector case at hand, one might expect this to be true for u
very small.
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are to be processed adaptively so as to preserve a signal S = cV/(VHV).
where c is a complex scalar quantity and V is the conjugate transpose of

the beamsteer filter VH. One way to formulate this algorithm is

t
otl - vixt . (Flf)txt,

where otl is the output of the first loop at time t, and (Fll_l)t is an adaptive

filter applied to Xt to predict the complex-valued scalar quantity VHXt. If
the constraint (FII_I)tV = 0 is imposed for all t, then it follows for the input

PN S pES e pees

Xt =S = cV/(VHV) that the output is

{VHV . (F?)tv]

t J
o, = —
1 VHV
_ cVHV
VHV

= (o}

H
so that the combined filter V - Fll_I has a unit response to the signal.

possible to consider a second loop or filter

t t Ht_t
0, = 0 - (FZ)X

Ot - ot _ (Ff:)txt

where the signal is still preserved if the constraints

H.t
(F)V = 0

o

It is




[

- M s pes

are required. If the filters are to operate indepeadently, the optional addi-
tional constraints
t |

(FJ,H)t Fp o= 0 (j # k)

need to be specifie:, The algorithm with only the constraint to preserve the
signal will be termed the single-constraint mode algorithm, whereas for the
algorithm with the additional constraints, the terminology multiple-constraint
mode will be used. Heuristically, the second loop allows the filters Fllj to
concentrate on the smaller components of the noise because 1“11_I has reduced
the largest noise component. The following section will develop the algorithm

mathematically, and then in the final section some results will be given to in-

dicate the behavior of the algorithms on synthetic data.

1-4 4
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SECTION 11
MATHEMATICAL DEVELOPMENT OF THE TECHNIQUE

A. MULTILOOP ADAPTIVE FILTERING - FREQUENCY DOMAIN
1. Steepest Descent Algorithm with Complex Linear Constraints

Let f be a real-valued function of the real variables Xpe Yo
Xor Yoo eeen X 0 Y . Suppose that these variables are subject to the m com-
plex constraint equations gk(x1, Ypr Xpr Ypr eees X yn) =0 (k=1,2,...,m).
To reduce the quantity f using the steepest-descent algorithm while satisfy-
ing the constraint equations, the variables xl, Yy xz. Yor eees xn. Yo can

be altered according to the equation

ptlopt ., {vr +2 ; [(Ax)k VReg,) + (A ), v(im gk)]}t .

where the superscripts t and t+l refer to the tth and (t+l)th iterations,
respectively, where pu 18 a scalar controlling the magnitude of the change in
the vector P, where the variables (Ax)k and ()\y)k are real-valued l.agran-
gian multipliers corresponding to the real and imaginary parts of the m com-
plex constraint equations, and where the vector P and the operator V are

column vectors given by the equations:
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The update equation implies that

t+l t
X, = x,
J J
and
yt+l Y R
J J
Alternatively,

(xj+iyj)‘“ - (xjnyj)‘ = u{(

> (A,

k=1

1)
+2 i (Ay)k

k=1

3

§;§-+2£

k=1

J

-
J{Im gk)

X,
J

and %=

af
J

o(Re 3k)

-—5-——-—& + i ——-—-—-ay

j

ollm g )
+ i _S_""k
\yj

i1-2

HRe g, ) Aim g, ) t
M3+ W3

-S-x— < i-a—;-)

3/3x,
3/9 Y,
3/dx
3/3y,

a/axn
b/ayn

——

j

m [(A : dRe Bk) Jflm Bk) )
’g <k ayj "’()‘y)k ——-—ayj
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For linear constraint conditions of the type

n y
2 [(Re Vy), - i0m vk)j] (x, + ty))

M-

[xj(Re vk)j + yj(lm vk)j] + i[yj(Re vk)j «xj(lm vk)j]

]
&

d(Re gk) o(Re Sk)
.._.S;j__ + i-—s-)-,j—— = (Revk)j + z(Ika)j

and
R T [tme vigy wim vy ]
so that
t+l t )t -1
(x'j + iyj) = (xj * iyj) F{( xj +1 ayj)

+2

™Ms

t
P [(Ax)k + i(Ay)k] [(Re vk)j + i(Im vk)j]}

=

where V.  is an arbitrary complex-valued column vector with n complex-

k

valued components (Re V ) +i(Im V, )

k'j K'j

A, and (vk)j = (Rer)j +i(m V),

(j=1, 2, ..., n). Setting )«k= ux)k+

» the update equation becomes ‘

Lt t af . A 3 ‘
(xj + 1yj) = (xj + iyj) -p{(-ng +i -B—Yj) +2 k;l Ak (vk)j }

II-3 v




—

o S e g e

The complex-valued Lagrangian multipliers Ak are determined from the

m constraint equations.
21 Single Constraint Mode

Let the output 0:1 at the nth loop of a multiloop frequency-

domain adaptive algorithm be given by the formula

o = o i (FH)t Xt .
n n-1 n
where 0:1 ] is the output of the (n-l)th loop, F:j is the nth-loop adaptive

filter, and X is the input data vector. The superscript H denotes conjugate
transpose, The superscripts t and t+l denote the vectors at iterations t
and t+l, respectively. From this point on, the superscript t will be under-
stood if the superscript t+l is not used. In the first loop of the adaptive
filter, the zero-th loop output is defined to be the beamsteer output VHX,

where VH is the beamsteer filter.

*
The squared amplitude g.s of the nth loop output is

H H H

* = * H X'F + F @ XX'F ,
n n n

-FXo* - 0
n

nn on-lon-l n -1 n-1

wheare the superscript * denctes complex conjugate. In the single-constraint

mode of the adaptive algorithm, this quantity is reduced subject to the constraint

vilF = 0
n

using the steepest-descent algorithm,
Since

3o o)

o(Re Fn)j

_ * H
= - 2Re (Xon-l)j + 2Re (XX Fn)j

11-4
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*
3o o ) «
nn 3 H
m = -2 Im(X on-l)j + 2Im (XX Fn)j
" e 30 o)
[oJg e/ [oJN e/
nn nn % H
—r———— { —— = 2 (-
JdRe Fn)j i a(Ian)j (xon-l t XX Fn)j'

t q s
where j denotes the j component of the vectors, the update equation is

t+l H

- XX'F - AVY)
n

ry
n

&
F_+2u(Xo

&
F o +2u(Xo - AV

To determine the Lagrangian multiplier, the relations VHF:'.l

H_t

=0

and

\' Fn = 0 are used, and the filter update equation is premultiplied by VH:

&
0 = vHF:’l = VHF:l + 2 (VHXon - viyy

n

%*
2p (VHXon - AVHV);

*
AVHV = VHXon;

%*
VHXo
n

VHV

Substitution of A into the update equation yields

H
* VvV X *
= 2 -
t+l Fn+ n Xon o O

n V'V

II-5
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H
_ * V'A%
= F + 2p o, I - H X
=|1 - [ + Zuo X1 .
H
In the last step, the fact that V F = 0 was used.
3. Multiple Constraint Mode

In the multiple-constraint mode, the output 0:1 at the nth

loop of the algorithm is again

H.t _t
o-.l - on-l - (Fn) B

%
but the squared output oo, is reduced subject to the multiple constraints

F F =0 (k=l.2,...,n).

where FH is the beamsteer filter, Therefore the update equation is
o

n
t+l *
F.'' = F_+ 2 (Xo_ - kZl Fo M)

If the matrix M and the column vector A are defined by the equations

BT 7]
VH
o
' A
Fy 1
M = . and A= .
H
Fn—l Ara-l ’
L - L —

I1-6
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|

the update equation may be rewritten

* H
F - Fn+ 2[‘. (Xon - M A)o

To determine the column vector A of Lagrangian multipliers,

%4

t+l

the update equation is premultiplied by M

o = Mt+l F::l+l

t+l

*
M7 F_+ 2u(0 M

t+1 X

_ Mt+lMHA) ,

where O is a column vector with n zeroes;

2p M My = Mt

1 +1
A=—2—“—(M M)

F
n

lF+

Substituting A into the update equation,

*
FPlor 4+ 2p0 X
n n n

. MH(MHIMH)-I

Mt+lF
n

t+1

*
2 M 0
+ pon X

o (M 1M) MtHX .

- Zuo M (M lMH) 1Mt+1X

) {I- LY [ Mt )]-1Mt+1} [F:1+ Zu(o:)txt] .

In the second loop,

t+1, Ht v
(M) =1l
(F)

[v =]

II-7




viv VHI‘;
= H.t+] H.t+l
(F}) (F)F

so that

0 (FIl'I)t+l Fi

and

t 1 [ T r
V F ==
) [ 1] VHy 0 vH
E 1
— BN H.t+1
0 (FIl-I)t+l Ftl (F))
L J L i
v F; vi
I ()t
1 1 1!
VVH F (FH)’L+1
S —— + .
VEy (Fll-l)t+l Fl

Thus the second-loop update equation is

1I-8
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=

t H. t+] t bt
F F. + 2u(0.) X
pttl I vvH FE)D [z ulo, ]
= - } Ht+l _t
2 vy (F.) 'F
1 1
B. MULTILOOP ADAPTIVE FILTERING - TIME DOMAIN
1. Single Constraint Mode

Let the output ot at the nth loop of a multiloop time-domain
n
adaptive algorithm be
T.t t
o = o | - (Fn) X,
where o::x 1 is the output of the (n-l)th loop, FZ is the nth-loop adaptive
filter, and X is the input data vector, The superscript T denotes trans-

pose. In the first loop of the adaptive filter, the zero-th loop output is defined

to be the beamsteer output VTX, where VT is the beamsteer filter,

2
The squared output o of the nth loop output is

In the "single-constraint'' mode of the adaptive algorithm, the squared output

o, is reduced subject to the non-redundant constraints expressed in the matrix

equation

using the steepest-descent algorithm, Here M is a matrix with as many rows
as constraint conditions and as many columns as filter weights, Fn is a column

vector containing the filter weights, and O is an all-zero column vector with

11-9 13
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as many elements as constraint conditions. Several constraints were permitted
so that the frequency response to a signal from the desired look direction for the

combined filter
n
T T
veo- ) F,
k=1
could be made white.

The update equation for the adaptive algorithm is

t+l 2 T
i . Fn - pv[on + 2A MFn]

5|
il

Fn + 2u](o

- XTP) X - MTA]
n-1

n n

= F +2poX-MTA]

where V denotes a column vector operator containing partial derivatives with
respect to the corresponding filter weights in F:l, and where A is a column
vector having as elements Lagrangian multipliers corresponding to each of the
constraint conditions, The constraint conditions MF::-I = O and MF:1 = 0
are used to determine the column vector A by premultiplying the update

equation by M
t+1

O = MF = MF_+ Zp[o MX - MMTA]
n n n

2p [onMX - MMTA] ;

MM'A = onMX;

otk WA A e ™




pucan = L] [- ] — =

1

P pame s e

A= on(MMT)'IMX.
Substitution into the update equation gives f
oo F 4 240 [ x - MY (mMT)~? MX] i
n n n
= F + 2po [I-MT(MMT)'IM]X
n n
g [1- 1\/1T(1vnv1T)'l M] [F + 2po0 x] .
n n
2l. Multiple Constraint Mode
t th . .
The output o, atthe n loop of the algorithm is the same
as for the '"single-constraint'' mode, but the constraints {
FTF =0 (k=1, 2 n-1)
k™ n = = 1 P e o oy L

supplement those expressed in the matrix equation

where Mo is a time-invariant matrix used to express c linear constraiut

conditions and Oc is a column vector with ¢ zeroes.

The update equation is

|

n-1
F'UooF Cuv]ol+ 2ATM F 4 ZAFTF]
n n n o on k k™ n
k=1
T n-1
e Fn + 2u (onX-Mol\0 - & FkAk) ’

where Ao is a column vector containing Lagrangian multipliers correspond-
ing to the c¢ constraint conditions expressed in the matrix equation Man =0,
and where the values A are scalar Lagrangian multipliers corresponding

k
to the new constraint conditions,

1I-11 15
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If a new matrix M and column vector A are defined by the equation

M A
o o
A
Fl 1
M = . and A = .
T
Fn-l An-l .
L - L )

the update equation may be rewritten

F'U o F 4 2 0 X - MTA).
n n n

M now has c¢ +n-1 rows, and A now has c¢ + n-1 elements,

To find the column vector A , the update equation is pre-

multiplied by t+1:
t+] _t+l
c+n-1 ~ o Fn
: MtHFn ¥ zu(oth“x MMy,

Oc+n ] is a column vector with c+n-1 zeroes. The superscript t+l is

attached to the matrix M because it contains the time varying filters F'lr. crod

T

Fn-l'

Rearrangement of the preceding equation gives the formula

1. T

2, M IMTA = Mt

F +2ux0 MT1x
n n

and hence the result

A = ZL (Mt+lMT)-lMt+an + on(Mt+lMT)-lMt+lX .

1-12 16
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Incorporating this result in the update equation,

’y
1

tiit F + 2uo X
n n

T -
_ mT oM7) 1

In the second loop,

B |
t+41, Tt Lo \:MZ ' FtlT
M™) = ] F Ty ¢
1
I —
B M MT ‘ MF
o o 1
I e .*_ ------
= T, t+1 I
(F1) MT | (Fr)t+lFT
L. 1 0 ' H 1
B I ]
MM, | O
= e ——— -, —_——————
| T.t+l _t
L oc | (Fl) Fl
l(MT)t is

t+l

B |
MmOt oo |
0o O ' [od
T —|- - —l- 7
(0]
c | (FT)HlFt
b | 1 1

F_ - 2uo M(M M)

l p— -
M: | (M MT) ! I O,
| - m e = - = 4
= T | 1
0
c | (FT)H'lFt
- | 1 IJ
I-13

t+41 T, .-

Mt+l

X

- (MT)t t+l(M \t -1t o+ Z”otxt) .
n n

s ¥
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|
MZ(MOMOT)-I ' F M,
= " T t+] _t -
L EO)TTF T t+1
| (Fy 1] )
T T, -1 Ftl (F;r)t“
B Mo (MnMo) Mo % T.t+] _t -
| (F))y  F

Hence the second-loop update equation is

t T.t+l t t t
F) (F)) [FZ + Zuoz)(].

I:,t-f-l - l1- MT(M MT)'IM
2 o o o o T.t+l _.t
(F,') " F
1 1
C. DATA GENERATION

An array of elements located in a three dimensional space is

defined by a set of coordinates, (Xk, Y Zk) where k=1, 2, ..., C, and

kl
C is the number of elements in the array, Signal vectors in the frequency
domain a:.d at frequency f{, Sj, for the array are defined for each of the spec-
ified '"lock directions' by the equation:

27 At (1)

e

-i2mwf A t, (2)
S, = e bod

i
]
2mf A t (C)
e J J

where j references a specific "look direction'. The jth "look direction'' is

defined by a set of angles AZj {(Azimuth) and EL.i (Elevation) as illustrated

below.

11-14 18
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The A t (k) is the relative time delay of the signal at array
J
element k and is dependent upon the ''look direction', j, and the propagation

velocity of the signal, VEL. 1

z y

Look Direction j

Consequently Sj can also be defined as
— =

- >
U- R{(1)

-i2mf VEL

e
-> >
U-R(2)

-i2ms
iamw VEL

e

]
"

-
where R (k) is a vector in the array coordinate space defining

-15 419
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B
the location of element k relative to some reference element, and Y is & unit
vector from the reference element in the direction of the '"look direciion'. There-

-
fore, the corarunents of U are:

Ux = Cos (EL) Sin (AZ)
Uy = Cos (EL) Cos (AZ)
U = Sin (EL)

A composite cross-power matrix, {1, is generated from p signal
vectors plus random noise accocding to the following formula:

p

s j=1 % Sjs? + Bl -coccmccccececccncacennnn.. (1)

where cnj and 8 are the relative weights to be associated with the :iignal vectors

and random noise component, respectively.

If we let x be . complex random vector such that

where ‘j is a random number with normal distribution, zero mean and variance

aj » and where

w is a complex random vector such that wwH = 1 , then by choosing

§=VH
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it follows that
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Thus, we can use equation (2) to generate a set of data vectors which has the

crosspower matrix fl in equation (1).
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D, EVALUATION AND DISPLAY

We try to evaluate the performance of the multiloop adaptive
filtering technique by comparing its mean square output (MSO) at time t for
each of the signal vectors, white noise and composite erergy with those of the

optimum maximum-likelihood filter.

The formula we used to calculate the MSO is as follows:

Optimum Filter Adaptive Filter lLoop K
H & t \H K t
White Noise BF F_ BV-D F) (V- 2 F)
i=1 i=1
H 2 K tH, |2
Signal Vector j ai | F s a | (V- 21 s,
K K
H t H t
Composite Energy f‘o N Fo (V - i-_-zl Fi ) (V- l_zl Fi )

where Z = ﬂ-l S,

and Sl is the signal vector to be preserved,

We take the ratio of optimum filter MSO to adaptive filter loop k
MSO and plot it as a function of t (number of adaptive iterations) for each of the

signal vectors, white noise and composite energy, respectively.
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SECTION III
PROCESSING RESULTS AND CONCLUSIONS

A set of synthetic data was generated for an equally-spaced line
array of five elements. Three coherent components were added to synthetic
random noise. The first of the three coherent components, Sl' was a signal
from the look direction. The second and third coherent components, S2 and
53, were interfering noise components, Different weightings were assigned
to these vectors (as shown in Figure III-1). The weighting a, = 0 for the
signal component Sl indicates that the signal component was not considered
to be part of the noise output. Component 3 represented a weak noise com-
ponent in the presence of a strong noise component (coinponent 2), It was ex-

pected that multiloop adaptive filtering would increase the sensitivity of adap-

tive processing to the weak noise component,

Several runs with two-loop adaptive filters were made using
500 synthetically-generated data vectors as input to a like number of iterations
of the adaptive-filter algorithm. Using the frequency-domain algorithms de-
rived in the previous section, the adaptive-filter algorithm was run both in the
single-constraint mode and the multiple-constraint mode. Two different sets
of initial filters were tried. The first was an optimum filter designed for the
data as specified, except that component 3 was omitted. The second was a

siznpie beamsteer filter.

The curves plotted are the ratios
B H
rraF [Far,,

where ﬂc is the crosspower spectrum matrix for each of the noise compon-

ents, F? is the optimum filter and FIZ is the composite adaptive filter
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vector corresponding to the iteration for which the power ratios are plotted.
Each curve, therefore, measures the performance of the adaptive filter rela-
tive to the optimum filter for each noise component or all noise components

combined.

Figures 111-2 and III-3 show the single-constraint-mode results
for the one-loop and two-loop algorithms through 500 iterations. The starting
filter was an optimum filter designed for the specified noise field buth with

compoaent 3 omitted. Convergence rates were u. = 0,00015 in the first loop

1

and B, = 0. 0003 in the second loop. The two-loop algorithm concentrated

much more effort on the weak component S, and actually suppressed this

3
energy more than the optimum filter. The results of Figure III-3 reflect the
single-constraint mode of processing, where the second-loop filter is con-

strained only to pass the signal.

In the top half of Figure IlI-4 are presented the numerical values
of the optimum filter set. Differences between the optimum filter set and the
one-loop or two-loop filter sets after 500 iterations are shown in the bottom
half. For purposes of comparison, the differences between the optimum filter
weights and the initial filter weights are also shown in the bottom half of the
figure. The circles representing the two-loop system lie much closer to zero
than the triangles corresponding to the one-loop system. Thus the two-loop
system appears to have converged significantly faster toward the optimum

filter.

A similar set of results is shown in Figures III-5 and III-6, In
this case, the convergence rates were increased and the beamsteer filter set
was used as the initial filter se.. Again, the two-loop algorithm appears to
have converged more rapidly toward the optimum filter and to have responded

more rapidly to the weaker noise component,

Figure III-7 gi\}es the multiple-constraint results for the two-

loop algorithm after 500 iterations, It can be compared with Figure 1II-3 to

I1I-3
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determine the effect of the constraint requiring orthogonality between Fl in

the first loop and F, in the second loop. Both figures depict results obtain-

2
ed from an initial filter designed to minimize the specified noise field (with
the weaker coherent noise component removed). Convergence rates in both

cases were 4. = 0,00015 in the first loop and #_ = 0,.0003 in the second

loop. The ort!luogonality constraint appears to havze stabilized the convergence
process, The noise output power for the individual components did not fluctu-
ate nearly as much in the multiple-constraint mode. Furthermore, the noise
output power for the various noise components after 500 iterations was much

closer to that which would have been obtained from an optimum syatem.

It is interesting that the various adaptive algorithms perform
better than the optimum filter on the discrete coherent noise components at

the expense of poorer performance on the white noise and composite noise.

The chief objective of this study was to determine whether
multiloop adaptive filtering could reduce the differences in the rate of conver-
gonce associated with unequal eigenvalues in the noise matrix, The simulation
results have demonstrated that multiloop adaptive filtering does indeed have
this capability. This capability is of potential use in speeding the rate of con-
vergence when the noise statistics vary slowly with time. In the event of such
quasi-stationary noise statistics, the single-loop adaptive algorithm would
otherwise tend to hinder adjustment to the changing noise statistics because of

unequal eigenvalues in the noise matrix,

111-10
32



SECTION 1V
REFERENCES

L. E. Brennan, et al., '"Control Loop Noise in Adaptive Array Antennas, "

IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-7,
No. 2, March 1971.

1v-1

33




